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Abstract 

In this paper, we consider the solution of the equation ( ) =xuk
c◊  

∑ =
δm

r
r
crC0 ,◊  where k

c◊  is the operator related to the diamond operator 

iterated k-times and is defined by 
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Now nx R∈  is the n-dimensional Euclidean space, ,nqp =+  rC  is a 

constant, δ is the Dirac-delta distribution and δ=δ0
c◊  and ....,2,1,0=k  



SUDPRATHAI BUPASIRI and KAMSING NONLAOPON 

 

70 

It is found that the type of solution of this equation, such as the ordinary 
function, the tempered distributions and the singular distributions depend 
on the relationship between the values of k and m. 

1. Introduction 

Kananthai [4] showed that the solution of the convolution form ( ) =xu  

( ) ( )xRxR ckck 21 ,2,2 ∗  is a unique elementary solution of the equation ( )xuk
c

k
c 21

 

,δ=  where k
c1

 and k
c2

 are the operators which related to the ultra-hyperbolic 

type operators iterated k-times and δ is the Dirac-delta distribution and in particular, 
if 1== pk  with tx =1  (times), 1c  and 2c  are velocities, then ( ) ( )xRxu c1,2=  

( )xR c2,2∗  is the elementary solution of the elastic wave equation of fourth order. 

Sritanratana and Kananthai [6] studied the product of the nonlinear diamond 
operators related to the elastic wave and also introduced the ultra-hyperbolic 

operator .k
c  Consider the operator related to the ultra-hyperbolic operator iterated 

k-times defined by 
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Trione [8] showed that the generalized function ( )xR k 1,2  defined by (2.2) is the 

unique elementary solution of the operator ,1
k  that is, ( ) ,1,21 δ=xR k

k  where 

nx R∈  is the n-dimensional Euclidian space. Also, Tellez [7, pp. 147-149] proved 
that ( )xR k 1,2  exists only if n is an odd with p odd and q even or only n is an even 

with p odd and q odd. Moreover, Bupasiri and Nonlaopon [1] studied the weak 
solution of compound equations related to the ultra-hyperbolic operators of the form 

( ) ( )∑
=

=
m

r

r
cr xfxuC

0

.  

Furthermore, we also know that the function ( )xE  defined by (2.4) is an 

elementary solution of the operator related to the Laplace operator 
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that is, ( ) ,δ=∆ xEc  where .nx R∈  

Now, in this paper, the operator related to the diamond operator can be expressed 
as the product of the operator c  and ,c∆  that is, 
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.k
c

k
c∆=  (1.1) 

Now we are finding the solution of the equation 

( ) ∑
=

δ=
m

r

r
cr

k
c Cxu

0

◊◊  

or 

 ( ) ∑
=

δ∆=∆
m

r

k
c

k
cr

k
c

k
c Cxu

0

.  (1.2) 

In finding the solutions of (1.2), we use the method of convolutions of the generalize 
functions. Before going to that point, the following definitions and some concepts 
are the needs. 

2. Preliminaries 

Definition 2.1. Let ( )nxxxx ...,,, 21=  be a point of the n-dimensional space 

,nR  

( ) ,22
2

2
1

22
2

2
1

2
qpppp xxxxxxcV +++ −−−−+++=  (2.1) 

where .nqp =+  Then define { }0and0: 1 >>∈=Γ+ Vxx nR  which designates 
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the interior of the forward cone and +Γ  designates its closure and the following 

functions introduce by Nozaki [5, p. 72] that 

 ( ) ( )
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α

,if,0
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x

xK
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n

n

c  (2.2) 

( )xR 1,α  is called the ultra-hyperbolic kernel of Marcel Riesz. Here α is a complex 

parameter and n is the dimension of the space. The constant ( )αnK  is defined by 

 ( )
( )







 α−

Γ





 −α+

Γ

αΓ




 α−Γ





 −α+Γπ

=α

−

22
2

2
1

2
22

1

pp

n

K

n

n  (2.3) 

and p is the number of positive terms of 

( ) nqpxxxxxxcV qpppp =+−−−−+++= +++ ,22
2

2
1

22
2

2
1

2  

and let ( ) .supp , +α Γ⊂xR c  Now ( )xR c,α  is an ordinary function if ( ) nc ≥α,Re  

and is a distribution of α if ( ) .,Re nc <α  

Definition 2.2. Let 

( ) n
nxxxx R∈= ...,,, 21  

and 

( ) 22
2

2
1

22
2

2
1

2
qpppp xxxxxxcx +++ +++++++=  

and let the function ( )xE  be defined by 

( ) ( ) ,
2

2
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 (2.4) 
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is a surface area of the unit sphere. Let the function 

( ) ,

2
2

2 2,





 αΓ






 α−Γπ=

−α−α−
α

nn

c
xnxS  (2.5) 

where α is a complex parameter. Now, from (2.4) and (2.5), we obtain 

( ) ( ).,2 xSxE c−=  (2.6) 

Lemma 2.1. ( )xR c,α  and ( )xS c,α  are homogeneous distributions of order 

( ).n−α  In particular, it is a tempered distribution. 

Proof. We need to show that ( )xRα  satisfies the Euler equation 

( ) ( ) ( )∑
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Hence ( )xR c,α  is a homogeneous distribution of order ( )n−α  as required and 

similarly ( )xS c,α  is also homogeneous distribution of order ( ).n−α   

Lemma 2.2. ( )xR c,α  and ( )xS c,α  are the tempered distributions. 

Proof. The proof of this lemma is given by Donoghue [2, pp. 154-155] which is 
stated that every homogeneous distribution is a tempered distribution.  

Lemma 2.3 (The convolutions of tempered distributions). 

( ) ( ) ( ).,,, xSxSxS ccc β+αβα =∗  (2.7) 

Proof. The proof of this lemma is also given by Donoghue [2, pp. 156-159]. 
Now, from (2.6) and (2.7) with ,2=β=α  we obtain 

( ) ( ) ( ( )) ( ( ))xSxSxExE cc ,2,2 −∗−=∗  

( ) ( )xS c,22
21 +−=  

( ).,4 xS c=  

By induction, we obtain 

 ( ) ( ) ( ) ( ) ( ).1 ,2
times-

xSxExExE ck
k

k

−=∗∗∗  (2.8) 

  

Lemma 2.4. Given the equation ( ) ,δ=∆ xuk
c  where k

c∆  is the operator related 

to the Laplace operator iterated k-times defined by 

k

qpppp

k
c

xxxxxxc 

























∂

∂++
∂

∂+
∂

∂+














∂

∂++
∂

∂+
∂

∂=∆
+++

2

2

2
2

2

2
1

2

2

2

2
2

2

2
1

2

2
1  

and ,nx R∈  then ( ) ( ) ( )xSxu ck
k

,21−=  is an elementary solution of the operator 

,k
c∆  where ( ) ( )xS ck

k
,21−  is defined by (2.8). 

Proof. Now ( ) δ=∆ xuk
c  can be written in the form ( ) .δ=∗δ∆ xuk

c  Convolving 

both sides by the function ( )xE  defined by (2.4), we obtain 
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( ( ) ) ( ) ( ) ( )xExExuxE k
c =δ∗=∗δ∆∗  

and 

( ( ) ) ( ) ( ).1 xExuxE k
cc =∗δ∆∗∆ −  

We have 

( ) ( ) ( ).1 xExuk
c =∗δ∆∗δ −  

Since ( ) ,δ=∆ xEc  

( ) ( ) ( ).1 xExuk
c =∗δ∆ −  

By keeping on convolving ( ),xE  1−k -times, we obtain 

( ) ( ) ( ) ( ).
times-k

xExExExu ∗∗∗=∗δ  

It follows that ( ) ( ) ( )xSxu ck
k

,21−=  by (2.8) as required. Before going to the proofs 

of theorems, we need to define the convolution of ( ) ( )xS ck
k

,21−  with ( )xR ck ,2  

defined by (2.2) with k2=α  and ....,2,1,0=k  Now, for the case ,2 nk ≥  we 

obtain that ( ) ( )xS ck
k

,21−  and ( )xR ck ,2  are analytic functions that are the ordinary 

functions, thus the convolution 

 ( ) ( ) ( )xRxS ckck
k

,2,21 ∗−  (2.9) 

exists. Now, for the case ,2 nk <  by Lemma 2.2 with ,2k=α  we obtain 

( ) ( )xS ck
k

,21−  and ( )xR ck ,2  are tempered distributions. 

Let K be a compact set and ,+Γ⊂K  where +Γ  is defined as the beginning. 

Choose the support of ( )xR ck ,2  equal to K, then ( )xR ck ,2supp  is compact (close 

and bounded). Then, by Donoghue [2, pp. 152-153], the convolution 

 ( ) ( ) ( )xRxS ckck
k

,2,21 ∗−  (2.10) 

exists and is a tempered distribution.  
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3. Main Results 

Theorem 3.1. Given the equation ( ) ,δ=xuk
c◊  where k

c◊  is the operator 

related to the diamond operator iterated k-times defined by (1.1) and ,nx R∈  then 

( ) ( ) ( ) ( )xRxSxu ckck
k

,2,21 ∗−=  defined by (2.9) and (2.10) is a unique elementary 

solution of the operator .k
c◊  

Proof. Now ( ) δ=xuk
c◊  can be written as 

( ) ( ) .δ=∆= xuxu k
c

k
c

k
c◊  

By Trione [8], Kananthai [4] and Tellez [7, pp. 147-149], we have that 

 ( ) ( )xRxu ck
k
c ,2=∆  (3.1) 

is a unique elementary solution of the operator k
c  for n odd integer with p odd and 

q even, or for n even with p and q odd integers. Also, we know that 

 ( ) ( ).,2 xRxu ck
k
c =∗δ∆  (3.2) 

Convolution both sides of (3.2) by ( ) ( ),1 ,2 xS ck
k−  we have 

[( ) ( ) ] ( ) ( ) ( ) ( )xRxSxuxS ckck
kk

cck
k

,2,2,2 11 ∗−=∗δ∗− ◊  

or 

[( ) ( )] ( ) ( ) ( ) ( ).11 ,2,2,2 xRxSxuxS ckck
k

ck
kk

c ∗−=∗−∆  

It follows that 

( ) ( ) ( ) ( ),1 ,2,2 xRxSxu ckck
k ∗−=  

by Lemma 2.4.  

Theorem 3.2. Given the equation 

[( ) ( ) ( )] ( ) ( ) ( )xRxSxRxS crkcrk
rk

ckck
kr

c ,22,22,2,2 11 −−
− ∗−=∗−◊    for   kr <<0  
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and 

[( ) ( ) ( )] δ=∗− −km
cckck

km
c xRxS ◊◊ ,2,21    for   .mk ≤  

Proof. From Theorem 3.1, [( ) ( ) ( )] .1 ,2,2 δ=∗− xRxS ckck
kk

c◊  Thus 

[( ) ( ) ( )] δ=∗−− xRxS ckck
kr

c
rk

c ,2,21◊◊  

or 

[( ) ( ) ( )] .1 ,2,2 δ=∗−∗δ− xRxS ckck
kr

c
rk

c ◊◊  

Convolving both sides by ( ) ( ) ( ),1 ,22,22 xRxS crkcrk
rk

−−
− ∗−  we obtain 

[( ) ( ) ( )] [( ) ( ) ( )]xRxSxRxS ckck
kr

ccrkcrk
rkrk

c ,2,2,22,22 11 ∗−∗∗− −−
−− ◊◊  

( ) ( ) ( ) δ∗∗−= −−
− xRxS crkcrk

rk
,22,221  

or 

[( ) ( ) ( )] ( ) ( ) ( )xRxSxRxS crkcrk
rk

ckck
kr

c ,22,22,2,2 11 −−
− ∗−=∗−∗δ ◊  

by Theorem 3.1. 

It follows that 

[( ) ( ) ( )] ( ) ( ) ( )xRxSxRxS crkcrk
rk

ckck
kr

c ,22,22,2,2 11 −−
− ∗−=∗−◊  

for .0 kr <<  For ,mk ≤  we have 

[( ) ( ) ( )] [( ) ( ) ( )] δ=∗−=∗− −− km
cckck

kk
c

km
cckck

km
c xRxSxRxS ◊◊◊◊ ,2,2,2,2 11  

by Theorem 3.1.  

Theorem 3.3. Given the differential equation 

 ( ) ∑
=

δ=
m

r

r
cr

k
c Cxu

0

,◊◊  (3.3) 

where k
c◊  is the operator related to the diamond operator iterated k-times and is 
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defined by 
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,nqp =+  n is odd with p odd and q even or n even with p odd and q odd, 

,nx R∈  rC  is a constant, δ is the Dirac-delta distribution and .0 δ=δc◊  Then, the 

type of solution (3.3) that depends on the relationship between the values of k and m 
is as the following cases: 

(1) if km <  and ,0=m  then (3.3) has the solution 

( ) ( ) ( ) ( ),1 ,2,20 xRxSCxu ckck
k ∗−=  

which is an elementary solution of the operator k
c◊  in Theorem 3.1, is an ordinary 

function for nk ≥2  and is a tempered distribution for ;2 nk <  

(2) if ,0 km <<  then the solution of (3.3) is 

( ) [( ) ( ) ( )]∑
=

−−
− ∗−=

m

r
crkcrkr

rk xRxSCxu
1

,22,221  

which is an ordinary function for nrk ≥− 22  and a tempered distribution for 
;22 nrk <−  

(3) if km ≥  and suppose ,Mmk ≤≤  then (3.3) has solution 

( ) ∑
=

− δ=
M

kr

kr
crCxu ,◊  

which is only the singular distribution. 

Proof. (1) For ,0=m  we have ( ) δ= 0Cxuk
c◊  and by Theorem 3.1, we obtain 

( ) ( ) ( ) ( ).1 ,2,20 xRxSCxu ckck
k ∗−=  Now ( ) ( )xS ck

k
,21−  and ( )xR ck ,2  are the 

analytic functions for nk ≥2  and also ( ) ( ) ( )xRxS ckck
k

,2,21 ∗−  exists and is an 

analytic function by (2.9). It follows that ( ) ( ) ( )xRxS ckck
k

,2,21 ∗−  is an ordinary 

function for .2 nk ≥  By Lemma 2.2 with ,2k=α  ( ) ( )xS ck
k

,21−  and ( )xR ck ,2  are 
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tempered distributions with nk <2  and by (2.10), we obtain that 

( ) ( ) ( )xRxS ckck
k

,2,21 ∗−  

exists and is a tempered distribution. 

(2) For the case ,0 km <<  we have 

( ) .2
11 δ++δ+δ= m

cmcc
k
c CCCxu ◊◊◊◊  

Convolution both sides by ( ) ( ) ( ),1 ,2,2 xRxS ckck
k ∗−  we obtain 

[( ) ( ) ( )] ( ) [( ) ( ) ( )]xRxSCxuxRxS ckck
k

cckck
kk

c ,2,21,2,2 11 ∗−=∗∗− ◊◊  

[( ) ( ) ( )]xRxSC ckck
k

c ,2,2
2

2 1 ∗−+ ◊  

[( ) ( ) ( )].1 ,2,2 xRxSC ckck
km

cm ∗−++ ◊  

By Theorems 3.1 and 3.2, we have 

( ) [( ) ( ) ( )]xRxSCxu ckck
k

c ,22,22
1

1 1 −−
− ∗−= ◊  

[( ) ( ) ( )]xRxSC ckck
k

c ,42,42
22

2 1 −−
− ∗−+ ◊  

[( ) ( ) ( )]xRxSC cmkcmk
mkm

cm ,22,221 −−
− ∗−++ ◊  

( ) ( ) ( )∑
=

−−
− ∗−=

m

r
crkcrkr

rk xRxSC
1

,22,22 .1  

Similarly, as in Case 1, ( )xu  is an ordinary function for nrk ≥− 22  and is a 

tempered distribution for .22 nrk <−  

(3) For the case km ≥  and suppose .Mmk ≤≤  Then we have 

( ) .1
1 δ++δ+δ= +
+

M
cM

k
ck

k
ck

k
c CCCxu ◊◊◊◊  

Convolution both sides by ( ) ( ) ( ),1 ,2,2 xRxS ckck
k ∗−  we obtain 

[( ) ( ) ( )] ( ) [( ) ( ) ( )]xRxSCxuxRxS ckck
kk

ckckck
kk

c ,2,2,2,2 11 ∗−=∗∗− ◊◊  

[( ) ( ) ( )]xRxSC ckck
kk

ck ,2,2
1

1 1 ∗−+ +
+ ◊  

[( ) ( ) ( )].1 ,2,2 xRxSC ckck
kM

cM ∗−++ ◊  
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By Theorems 3.1 and 3.2, we finally obtain 

( ) ∑
=

−−
+ δ=δ++δ+δ=

M

kr

kr
cr

kM
cMckk CCCCxu .1 ◊◊◊  

This finishes the proof of Theorem 3.3.  
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